The Graphene Oxide Media Lie and Informed Consent of a Patient.

In spring, 2021, the International Journal of Clinical Practice, published an important critical review on patient understanding of the experimental covid jab. They stated ”Patient comprehension is a critical part of meeting medical ethics standards of informed consent in study designs. The aim of the study was to determine if sufficient literature exists to require clinicians to disclose the specific risk that COVID‐19 vaccines could worsen disease upon exposure to challenge or circulating virus”.

Generally, people have such blind faith in the governments and medicine, they forget that these all still care about making a profit, especially pharmaceutical companies. It seems the indoctrination of fear numbs the ability of people to question the full validity and safety of what is being offered to them so quickly as a solution, their vulnerability allows them to be exploited. Meanwhile, the reality is that corporate big tech and governments alike have supressed safe alternative repurposed and award winning medicines like Hydroxychloroquine or Ivermectin, that has already been shown to be 100 percent effective and safe preventative treatment of SARS‐CoV‐2 by non-biased frontline doctors who have saved thousands of lives with these measures. Meanwhile, people do not go so far as to question the plutocratic monopoly of pharmaceuticals or the world’s now 5 controlled news media agencies and how these entities together to protect corporate investments.

The masses believe in what is being peddled as the COVID-19 ”Vaccine”, without being presented well-informed facts. It is a Nuremberg code violation for doctors, nurses, or healthcare workers to administer any experimental medicine to a patient without educating the patient, and without offering alternative pre-existing safely tested preventative medicines such as Ivermectin, or hydroxychloroquine.

Doctors have a moral and ethical duty to be sure that the patient is fully aware of the implications of taking an experimental medicine and the risks involved in these trials, especially when these covid shots were granted temporary FDA emergency use authorization, which means they have skipped normal animal lab testing trial protocols that usually last for years. These doctors and nurses aren’t protecting the patients but instead they are serving the vaccine companies and their profits, which is only resulting in the most shocking exponential number of patient adverse reactions and deaths on global databases that only collect 10 percent of reported adverse reactions, so if the number is already large and only ten percent are being reported, then what is the full scale reality of adverse reactions and deaths due to this experimental medicine?

Patients are not even told about the UK government Yellowcard Scheme, EU and Vaers data of adverse deaths and reactions, and it seems nor are the healthcare workers and advisors aware that these websites exist, and the doctors and nurses certainly don’t tell the patients to look at these sites first before going ahead with the medication.  Medical research group in the U.K. pointed out that the Wuhan coronavirus (COVID-19) vaccines are “unsafe for humans” based on adverse event reports. Scientists and doctors looked at data from the British government’s Yellow Card vaccine event reporting system. They found that the “overwhelming” number of adverse reactions from COVID-19 vaccines definitely raised alarm bells. Dr. Tess Lawrie is a world-class researcher and consultant to the World Health Organization, she recently wrote to the MHRA regarding the Yellowcard deaths and adverse reactions. Dr, Naomi Wolf wrote on her telegram channel on Dr Lawrie et al, ”Researchers at the Evidence-based Medicine Consultancy (EbMC) research group based in Bath, England unveiled concerning findings. EbMC Director Dr. Tess Lawrie wrote about her group’s findings in a June 9 letter to the MHRA Chief Executive Officer Dr. June Raine.”

Dr. Tess Lawrie wrote in her letter that between Jan. 4 and May 6 of this year, a total of 888,196 adverse events and 1,253 deaths were reported to Yellow Card. Similar to VAERS data, these were not directly proven as correlated with the COVID-19 vaccine. Despite this, the EMBC director raised safety concerns for those getting the vaccine. She wrote that given the Yellow Card figures, “the MHRA now has more than enough evidence … to declare the COVID-19 vaccine unsafe for use in humans.”

Lawrie’s urgent questions for the MHRA were to respond as soon as possible. She asked how many people have died within 28 days of vaccination and how many people have been hospitalized for the same period. She also asked for the total number of people disabled by the vaccination. (Since the actual Yellowcard data only reflects ten percent of reported cases, so that leaves the question, what about the unreported cases?).

In a later interview with TrialSiteNews, she described the total number of cases as “concerning” and called for follow-ups on persons who reported adverse reactions “to ensure there are no further problems.” Lawrie said: “The scope of morbidity is striking, evidencing a lot of incidents and what amounts to a large number of ill.

Lawrie also lamented that Yellow Card was “incredibly opaque” during her TrialSiteNews interview. She shared that researchers are unable to filter vaccine safety incidents by age, gender or other attributed. According to the EbMC director, about 60 percent or more of COVID-19 vaccines in the U.K. came from AstraZeneca, with the remainder from the Pfizer/BioNTech vaccine. The letter called on the MHRA to urgently make reports of vaccine adverse reaction public, given that pharmacovigilance data is known to be subsequently under-reported. It also called on the regulator to assist people with reporting adverse reactions.

”Lawrie concluded the letter: “Preparation should be made to scale up humanitarian efforts to assist those harmed by the COVID-19 vaccines, and to anticipate and ameliorate medium to longer term effects. As the mechanism for harms from the vaccines appears to be similar to COVID-19 itself, this includes engaging with numerous international doctors and scientists with expertise in successfully treating COVID-19.” – Dr Naomi Wolf.

Patients are being left out on a limb when they are not told about adverse events or where to find out this information about the reported events. Moreover, patients are not being told that in the event that anything were to happen to them after taking the covid jab, they are not going to get the legal or financial support they would require, let alone, knowledgeable treatment on how to deal with the medical ”side effects”. The vaccine manufacturers have been granted immunity by governments, prior to the emergency roll out, which means they aren’t liable to be sued for damages should the patient suffer adverse reactions or death and require financial compensation.

Patients are generally not told the actual facts which are that it is a biological experimental mRNA based gene therapy, not actually a vaccine. They aren’t being informed that this experimental medicine has never been done before and or the effects of the novel ingredients such as the mRNA and nanoparticles. Therefore, due to the emergency FDA roll out, this covid jab has not undergone any of the normal lab trial animal studies, nor usual safety measures which a normal vaccine is usually subject to, including, 7 to 10 years of animal experiments, laboratory tests, risk assessments and safety measures before being offered to the public.

A journal article published in International Journal of Clinical Practice recently published in spring of 2021, shows research that all of these Covid jabs are given without the patient being made aware of the full details on implications and side effects, as Dr Tess Lawrie and thousands of other concerned doctors and scientists are saying but who not being given a voice by the main stream media. Therefore, the sad fact remains, if patients are not being fully informed and only partially informed, they cannot give full informed consent. Nuremberg violations are being broken on an unprecedented scale, and the critical implications of this being ignored all for profit for governments and corporations who will become liable for their actions along with doctors, nurses and public health advisors who have ignored their Hippocratic oath to protect the patient. Furthermore, the PCR test which was not designed for detecting viruses, according to scientists who work with PCR tests, Karry Mullis the original innovator stated this test was designed to read genomes not virus material, it cannot identify viruses. The correct number of cycles according to experienced lab scientists should not go beyond the limit of 11 cycle threshold, the higher the number of cycles the higher the number of distorted false positives. Therefore, why are governments and health advisors setting the threshold so high, 25, 35 and 45 cycle thresholds that provide higher false positives to keep generating increased inaccurate statistics, in order to keep the emergency situation to continue to administer an experimental medicine without the normal safety test criteria.

As we know, the experimental biological agent being peddled as a vaccine has been widely administered. Aside from the mercury, cancer cells, (mutagenic MRC-5 cell line), polyethylene glycol (PEG), the animal and aborted human foetal cells, lets consider the implications of other patented genetic material contained in what is described as innovative medicine by mainstream media and governments, mRNA spike proteins use aluminium or other metalic nanoparticles contained in the vaccine. Furthermore, another interesting point raised by Dr. Chinda Brandolino is the ramifications of whoever is administered this patented mRNA gene therapy, will lose human rights and become property of those who own the mRNA patent.

Graphene OxideWho is telling the truth about Graphene Oxide in the Covid Jab-Main Stream Media and the Vaccine Manufacturers or La Quinta Columna?

La Quinta Columna TV shared results of lab tests that discovered large quantities of graphene oxide in these ”vaccines”, however, mainstream media moguls and sponsored fact checkers quickly rebuttals this as a false claim, however, if an independent journalist, scientist or critical thinker looks at the scientific journals in nanomedicine, one will see it is clearly true, graphene oxide nanoparticles are in fact discussed as a serious nanoparticle ingredients used in these innovative experimental covid jab medicines.

The shocking realization leaves us to conclude La Quinta Columna TV are correct- graphene oxide is being used in the covid jabs and obviously, the vaccine manufacturers are liars protecting their own profits, moreover, how has it become a reality that we live in a society, where corporate media and sponsored fact checkers are biasedly supporting these pharmaceutical profits as well? What happened to democracy? Doesn’t this feel like communism? How are they allowed to get away with such huge lies with the gravest of consequences being hundreds of thousands of human deaths and adverse reactions? Just for protecting invested stakeholders with a major role in the suppression of truth or why else would paid journalists and news agencies lie? This takes us back to the plutocracy that is now designing our consensual reality especially in highly controlled news media and big tech censoring of the real facts and real science, no matter what the consequences are, including human death and suffering. See below Frontiers in Medicine, have published at article in June, 2021 on the use of Graphene oxide in the covid jab. Frontiers in Medicine specialize in research and medical innovations in the area of Infectious disease, surveillance, prevention and treatment.

The article is called ”Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19”, the article openly discusses the surveillance advantages of nanoparticles and metals such as graphene oxide

There are several designs for nanoparticle-based peptide vaccines. Nanoparticles can be used to construct a multiple antigen-presenting platform. Self-assembling lipo-peptides, consisting of a lipid chain bound to an antigen, can form micelles with enhanced epitope presentation ability”.

Their size, ranging from 10 to 100 nm, allows them to easily interact with a biological target of similar size and pass through several types of membranes, such as the lung-blood vessel junction and the blood-brain barrier ”.

Doctors have been raising concerns that any nanoparticle material that can cross the blood brain barrier can increase risk of blood clotting in the brain.

Specialized nanoparticles with a magnetic nature can be guided through the body via a system of external magnets and forced to increase their temperature by exposing them to an oscillating magnetic field, a technique currently used in oncology for tumor suppression”

”The SpyCatcher/SpyTag technology allows irreversible conjugation of a recombinant protein by adding a sequence of the SpyTag peptide (13 amino acids) to its DNA sequence. The SpyTag spontaneously reacts with the SpyCatcher protein and allows for oligomerization”.

”Recent advancements in nanotechnology have allowed for the release of a SARS-CoV-2 detection platform that uses graphene conjugated to an anti-spike antibody. This novel kit requires no sample pretreatment or labeling and is impressively effective in detecting SARS-CoV-2 at very low concentrations (183). Alternative detection methods have been designed such as dual-functioning plasmonic biosensors, which tap into the energetics of DNA-RNA hybridization, as well as Graphene Oxide particles coated with fluorophore-bound DNA target strands that can detect viral helicase”.

Graphene Oxide Nanoparticles (GO-NPs) have been shown to increase leukocyte numbers such as macrophages and T cells. This effect boosts adaptive immunity, thus allowing for a better immune response and viral clearance, or a possible use as vaccine adjuvants. In the scenario of uncontrolled hyperinflammation, nanodiamonds elicit an anti-inflammatory state in macrophages, while carbon and graphene sheets can be repurposed to remove pro-inflammatory cytokines and interleukins from the blood of patients , ”-Nanomedicine: A Diagnostic and Therapeutic Approach to COVID-19”. 4th June, 2021. -Arjun Sharma et al.

The article also outlines the limitations and drawbacks of the use of nanoparticles in the covid-19 jab,

Another limitation of nanoparticles are risks of unwanted tissue interactions and toxicity, unwanted spread and deposition in the body including unwanted crossing of the blood-brain barrier (194, 195). Accidental inhalation into the lungs is feared to cause epithelial injury, pulmonary inflammation and contribute to fibrosis depending on the size and chemical composition of the nanoparticles (196). Moreover, nanoparticles have been shown to interfere with biological processes like inflammation, oxidative stress, mitochondrial function, macrophage phagocytosis and platelet function (2). Acute or chronic toxicity of nanoparticles may be caused via ROS generation, cell membrane binding, DNA damage, altered cell cycle regulation and protein denaturation (197). Another important issue is the incomplete understanding of long-term effects of nanoparticles in humans and the environment. For example, a study on the effect of chronic administration of nanoparticles to rats resulted in structural damage in their testis, including disorganization of spermatogenic cells, misoriented testis and reduction of germ cells (198, 199). Allergic reactions and anaphylaxis to the mRNA lipid nanoparticle vaccines (Moderna, Pfizer/BioNtech) for COVID-19 have been blamed on the nanoparticle design and composition’‘ (200)

Graphene Oxide Patent for Vaccines

The invention is used as a novel adjuvant and vaccine, and can be expected to be used for preventing and treating human diseases. –Patent number CN112089834A

With this vital information about nanoparticles and how the body can react to them, shouldn’t this information be made readily and clearly available to every patient considering the covid jab?

Going back to the other journal article published in spring 2021, on patient’s informed consent-

Results of the study
”COVID‐19 vaccines designed to elicit neutralising antibodies may sensitise vaccine recipients to more severe disease than if they were not vaccinated. Vaccines for SARS, MERS and RSV have never been approved, and the data generated in the development and testing of these vaccines suggest a serious mechanistic concern: that vaccines designed empirically using the traditional approach (consisting of the unmodified or minimally modified coronavirus viral spike to elicit neutralising antibodies), be they composed of protein, viral vector, DNA or RNA and irrespective of delivery method, may worsen COVID‐19 disease via antibody‐dependent enhancement (ADE). This risk is sufficiently obscured in clinical trial protocols and consent forms for ongoing COVID‐19 vaccine trials that adequate patient comprehension of this risk is unlikely to occur, obviating truly informed consent by subjects in these trials.”

Conclusions drawn from the study and clinical implications
”The specific and significant COVID‐19 risk of ADE should have been and should be prominently and independently disclosed to research subjects currently in vaccine trials, as well as those being recruited for the trials and future patients after vaccine approval, in order to meet the medical ethics standard of patient comprehension for informed consent.”

by Carlita Shaw

Related articles

Informed consent disclosure to vaccine trial subjects of risk of COVID‐19 vaccines worsening clinical disease Timothy Cardozo, Ronald VeazeyInt J Clin Pract. 2021 Mar; 75(3): e13795. Published online 2020 Dec 4. doi: 10.1111/ijcp.13795PMCID: PMC7645850 ArticlePubReaderPDF–309KCite

Beyond Nazi War Crimes Experiments: The Voluntary Consent Requirement of the Nuremberg Code- 75 year review

Dr Simone Gold on Politicization of Medicine and Nuremberg Code Violations

Proof that puts an end to the Sars-CoV-2 Narrative | Professor Sucharit Bhakdi, M.D

Dr Reiner Fuellmich begins Legal Litigation on the Covid-19 Fraud- The Greatest Crime Against Humanity

CORONA INVESTIGATIVE COMMITTEE: DR. Reiner Fuellmich and Vera Sharav

Toxic Technocracy- How We’ve Arrived at the Age of Transhumanism

Beyond Nazi War Crimes Experiments: The Voluntary Consent Requirement of the Nuremberg Code- 75 year review

Breaking News From the Senate on COVID Fraud

Hydroxychloroquine treatment for Covid-19 patients

Dr Kory recommends Ivermectin, a powerful anti-viral drug for early treatment

Unravelling the Technocracy of Free Speech

FLCCC Alliance Response to Dr. Kory’s Senate Testimony Removed by YouTube

What is in the PCR tests?

‘Urgent’ British report calls for complete cessation of COVID vaccines in humans

Dr Breggin on the US – China Connection

Doctors and Scientists Write to European Medicines Agency Warning of COVID-19 Vaccine Dangers

The International Criminal Court the Hague has accepted the claim of Violation of the Nuremberg Code, of the Israeli government

Rich Pickings, Media Moguls, Science and Scientism

Unravelling the Technocracy Censorship of Free Speech

World Renowned Scientist used Bayesian analysis on SARS-CoV-2 to find it is of Lab Origin

22 Scientists Debunked the Science behind PCR test accuracy

Lockdowns and Business Closure Found to be Scientifically Proven Ineffective

Ex-Pfizer Doctor Yeadon and Lung Specialist Doctor Wodarg file for suspension of all SARS CoV2 Vaccine Studies.

Covid-19: politicisation, “corruption,” and suppression of science

Deadly Prion Brain Diseases and Experimental mRNA Covid-19 Vaccines: Study Finds Plausible Link

Further journal articles on nanoparticles in medicine

1. Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. (2021) 16:369–84. doi: 10.1038/s41565-021-00866-8

CrossRef Full Text | Google Scholar

2. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. (2008) 3:133–49. doi: 10.2147/IJN.S596

PubMed Abstract | CrossRef Full Text | Google Scholar

3. Abd El-Aziz TM, Stockand JD. Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) – an update on the status. Infect Genet Evol. (2020) 83:104327. doi: 10.1016/j.meegid.2020.104327

PubMed Abstract | CrossRef Full Text | Google Scholar

4. Wu P, Hao X, Lau EHY, Wong JY, Leung KSM, Wu JT, et al. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January, 2020. Euro Surveill. (2020) 25:2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044

PubMed Abstract | CrossRef Full Text | Google Scholar

5. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. (2020) 579:270–3. doi: 10.1038/s41586-020-2012-7

PubMed Abstract | CrossRef Full Text | Google Scholar

6. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. (2020) 323:1239–42. doi: 10.1001/jama.2020.2648

PubMed Abstract | CrossRef Full Text | Google Scholar

7. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. (2020) 55:105924. doi: 10.1016/j.ijantimicag.2020.105924

PubMed Abstract | CrossRef Full Text | Google Scholar

8. Khafaie MA, Rahim F. Cross-country comparison of case fatality rates of COVID-19/SARS-COV-2. Osong Public Health Res Perspect. (2020) 11:74–80. doi: 10.24171/j.phrp.2020.11.2.03

PubMed Abstract | CrossRef Full Text | Google Scholar

9. Sorci G, Faivre B, Morand S. Explaining among-country variation in COVID-19 case fatality rate. Sci Rep. (2020) 10:18909. doi: 10.1038/s41598-020-75848-2

PubMed Abstract | CrossRef Full Text | Google Scholar

10. Ke R, Romero-Severson E, Sanche S, Hengartner N. Estimating the reproductive number R0 of SARS-CoV-2 in the United States and eight European countries and implications for vaccination. J Theor Biol. (2021) 517:110621. doi: 10.1016/j.jtbi.2021.110621

PubMed Abstract | CrossRef Full Text | Google Scholar

11. Chen TM, Rui J, Wang QP, Zhao ZY, Cui JA, Yin L. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus. Infect Dis Poverty. (2020) 9:24. doi: 10.1186/s40249-020-00640-3

PubMed Abstract | CrossRef Full Text | Google Scholar

12. Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. (2020) 20:e238–e44. doi: 10.1016/S1473-3099(20)30484-9

PubMed Abstract | CrossRef Full Text | Google Scholar

13. Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA. The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med. (2020) 9:1225. doi: 10.3390/jcm9041225

PubMed Abstract | CrossRef Full Text | Google Scholar

14. Fani M, Teimoori A, Ghafari S. Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Future Virol. (2020) 15:317–23. doi: 10.2217/fvl-2020-0050

CrossRef Full Text | Google Scholar

15. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. (2020) 395:1054–62. doi: 10.1016/S0140-6736(20)30566-3

PubMed Abstract | CrossRef Full Text | Google Scholar

16. Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. (2020) 16:1686–97. doi: 10.7150/ijbs.45472

CrossRef Full Text | Google Scholar

17. Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. (2020) 181:1016–35 e19. doi: 10.1016/j.cell.2020.04.035

PubMed Abstract | CrossRef Full Text | Google Scholar

18. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. (2020) 581:215–20. doi: 10.1038/s41586-020-2180-5

PubMed Abstract | CrossRef Full Text | Google Scholar

19. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. (2020) 10:102–8. doi: 10.1016/j.jpha.2020.03.001

PubMed Abstract | CrossRef Full Text | Google Scholar

20. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA. (1967) 57:933–40. doi: 10.1073/pnas.57.4.933

PubMed Abstract | CrossRef Full Text | Google Scholar

21. Abdul-Rasool S, Fielding BC. Understanding human coronavirus HCoV-NL63. Open Virol J. (2010) 4:76–84. doi: 10.2174/1874357901004010076

CrossRef Full Text | Google Scholar

22. Bradburne AF, Bynoe ML, Tyrrell DA. Effects of a “new” human respiratory virus in volunteers. Br Med J. (1967) 3:767–9. doi: 10.1136/bmj.3.5568.767

PubMed Abstract | CrossRef Full Text | Google Scholar

23. Poutanen SM. Human coronaviruses. Princip Pract Pediatr Infect Dis. (2012) 2012:1117–20.e4. doi: 10.1016/B978-1-4377-2702-9.00224-5

CrossRef Full Text | Google Scholar

24. Lau SK, Woo PC, Yip CC, Tse H, Tsoi HW, Cheng VC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. (2006) 44:2063–71. doi: 10.1128/JCM.02614-05

PubMed Abstract | CrossRef Full Text | Google Scholar

25. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. (2009) 324:1557–61. doi: 10.1126/science.1176062

PubMed Abstract | CrossRef Full Text | Google Scholar

26. Hammad MA, Syed Sulaiman SA, Aziz NA, Mohamed Noor DA. Prescribing statins among patients with type 2 diabetes: the clinical gap between the guidelines and practice. J Res Med Sci. (2019) 24:15. doi: 10.4103/jrms.JRMS_100_18

PubMed Abstract | CrossRef Full Text | Google Scholar

27. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: their roles in pathogenesis. J Microbiol Immunol Infect. (2020) 54:159–63. doi: 10.1016/j.jmii.2020.03.022

PubMed Abstract | CrossRef Full Text | Google Scholar

28. Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur Rev Med Pharmacol Sci. (2020) 24:2006–11. doi: 10.26355/eurrev_202002_20378

PubMed Abstract | CrossRef Full Text | Google Scholar

29. Bianchi M, Benvenuto D, Giovanetti M, Angeletti S, Ciccozzi M, Pascarella S. Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? Biomed Res Int. (2020) 2020:4389089. doi: 10.1155/2020/4389089

PubMed Abstract | CrossRef Full Text | Google Scholar

30. Hu Y, Wen J, Tang L, Zhang H, Zhang X, Li Y, et al. The M protein of SARS-CoV: basic structural and immunological properties. Genomics Proteomics Bioinformatics. (2003) 1:118–30. doi: 10.1016/S1672-0229(03)01016-7

PubMed Abstract | CrossRef Full Text | Google Scholar

31. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. (2019) 16:69. doi: 10.1186/s12985-019-1182-0

PubMed Abstract | CrossRef Full Text | Google Scholar

32. Robson B. COVID-19 Coronavirus spike protein analysis for synthetic vaccines, a peptidomimetic antagonist, and therapeutic drugs, and analysis of a proposed Achilles’ heel conserved region to minimize probability of escape mutations and drug resistance. Comput Biol Med. (2020) 121:103749. doi: 10.1016/j.compbiomed.2020.103749

PubMed Abstract | CrossRef Full Text | Google Scholar

33. Arya R, Kumari S, Pandey B, Mistry H, Bihani SC, Das A, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. (2021) 433:166725. doi: 10.1016/j.jmb.2020.11.024

CrossRef Full Text | Google Scholar

34. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J Adv Res. (2020) 24:91–8. doi: 10.1016/j.jare.2020.03.005

PubMed Abstract | CrossRef Full Text | Google Scholar

35. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. (2020) 5:eabc3582. doi: 10.1126/sciimmunol.abc3582

PubMed Abstract | CrossRef Full Text | Google Scholar

36. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. (2020) 181:271–80 e8. doi: 10.1016/j.cell.2020.02.052

PubMed Abstract | CrossRef Full Text | Google Scholar

37. Zeng F, Hon CC, Yip CW, Law KM, Yeung YS, Chan KH, et al. Quantitative comparison of the efficiency of antibodies against S1 and S2 subunit of SARS coronavirus spike protein in virus neutralization and blocking of receptor binding: implications for the functional roles of S2 subunit. FEBS Lett. (2006) 580:5612–20. doi: 10.1016/j.febslet.2006.08.085

PubMed Abstract | CrossRef Full Text | Google Scholar

38. Hoffmann M, Kleine-Weber H, Pohlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell. (2020) 78:779–84 e5. doi: 10.1016/j.molcel.2020.04.022

PubMed Abstract | CrossRef Full Text | Google Scholar

39. Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C, Alysandratos KD, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell. (2020) 27:962–73 e7. doi: 10.1016/j.stem.2020.09.013

PubMed Abstract | CrossRef Full Text | Google Scholar

40. Gao H, Yao H, Yang S, Li L. From SARS to MERS: evidence and speculation. Front Med. (2016) 10:377–82. doi: 10.1007/s11684-016-0466-7

CrossRef Full Text | Google Scholar

41. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. (2020) 41:1141–9. doi: 10.1038/s41401-020-0485-4

PubMed Abstract | CrossRef Full Text | Google Scholar

42. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. (2007) 20:660–94. doi: 10.1128/CMR.00023-07

PubMed Abstract | CrossRef Full Text | Google Scholar

43. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. (2020) 395:565–74. doi: 10.1016/S0140-6736(20)30251-8

PubMed Abstract | CrossRef Full Text | Google Scholar

44. Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. Front Microbiol. (2020) 11:1800. doi: 10.3389/fmicb.2020.01800

PubMed Abstract | CrossRef Full Text | Google Scholar

45. Jary A, Leducq V, Malet I, Marot S, Klement-Frutos E, Teyssou E, et al. Evolution of viral quasispecies during SARS-CoV-2 infection. Clin Microbiol Infect. (2020) 26:1560 e1–4. doi: 10.1016/j.cmi.2020.07.032

PubMed Abstract | CrossRef Full Text | Google Scholar

46. Laha S, Chakraborty J, Das S, Manna SK, Biswas S, Chatterjee R. Characterizations of SARS-CoV-2 mutational profile, spike protein stability and viral transmission. Infect Genet Evol. (2020) 85:104445. doi: 10.1016/j.meegid.2020.104445

PubMed Abstract | CrossRef Full Text | Google Scholar

47. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. (2021) 592:116–21. doi: 10.1038/s41586-020-2895-3

CrossRef Full Text | Google Scholar

48. Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, et al. SARS-CoV-2 spike D614G change enhances replication and transmission. Nature. (2021) 592:122–7. doi: 10.1038/s41586-021-03361-1

PubMed Abstract | CrossRef Full Text | Google Scholar

49. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. (2020) 182:812–27 e19. doi: 10.1016/j.cell.2020.06.043

PubMed Abstract | CrossRef Full Text | Google Scholar

50. Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, et al. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. (2020) doi: 10.1101/2020.06.12.148726

PubMed Abstract | CrossRef Full Text | Google Scholar

51. Abdool Karim SS, de Oliveira T, Loots G. Appropriate names for COVID-19 variants. Science. (2021) 371:1215. doi: 10.1126/science.abh0836

CrossRef Full Text | Google Scholar

52. Mosselhy DA, Virtanen J, Kant R, He W, Elbahri M, Sironen T. COVID-19 pandemic: what about the safety of anti-coronavirus nanoparticles? Nanomaterials. (2021) 11:796. doi: 10.3390/nano11030796

PubMed Abstract | CrossRef Full Text | Google Scholar

53. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 variants – clinical, public health, and vaccine implications. N Engl J Med. (2021) 384:1866–68. doi: 10.1056/NEJMc2100362

PubMed Abstract | CrossRef Full Text | Google Scholar

54. Nile SH, Nile A, Qiu J, Li L, Jia X, Kai G. COVID-19: pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. (2020) 53:66–70. doi: 10.1016/j.cytogfr.2020.05.002

PubMed Abstract | CrossRef Full Text | Google Scholar

55. Polak SB, Van Gool IC, Cohen D, von der Thusen JH, van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. (2020) 33:2128–38. doi: 10.1038/s41379-020-0603-3

PubMed Abstract | CrossRef Full Text | Google Scholar

56. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant. (2020) 39:405–7. doi: 10.1016/j.healun.2020.03.012

PubMed Abstract | CrossRef Full Text | Google Scholar

57. Jordan RE, Adab P, Cheng KK. Covid-19: risk factors for severe disease and death. BMJ. (2020) 368:m1198. doi: 10.1136/bmj.m1198

PubMed Abstract | CrossRef Full Text | Google Scholar

58. Bohn MK, Lippi G, Horvath A, Sethi S, Koch D, Ferrari M, et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence. Clin Chem Lab Med. (2020) 58:1037–52. doi: 10.1515/cclm-2020-0722

PubMed Abstract | CrossRef Full Text | Google Scholar

59. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. (2020) 395:507–13. doi: 10.1016/S0140-6736(20)30211-7

PubMed Abstract | CrossRef Full Text | Google Scholar

60. Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. (2020) 53:38–42. doi: 10.1016/j.cytogfr.2020.04.002

PubMed Abstract | CrossRef Full Text | Google Scholar

61. Gao Z, Xu Y, Sun C, Wang X, Guo Y, Qiu S, et al. A systematic review of asymptomatic infections with COVID-19. J Microbiol Immunol Infect. (2021) 54:12–6. doi: 10.1016/j.jmii.2020.05.001

PubMed Abstract | CrossRef Full Text | Google Scholar

62. Grant A, Hunter PR. Immunisation, asymptomatic infection, herd immunity and the new variants of COVID 19. medRxiv. (2021). doi: 10.1101/2021.01.16.21249946

CrossRef Full Text | Google Scholar

63. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. (2020) 8:807–15. doi: 10.1016/S2213-2600(20)30225-3

PubMed Abstract | CrossRef Full Text | Google Scholar

64. Sagar M, Reifler K, Rossi M, Miller NS, Sinha P, White LF, et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Invest. (2021) 131:e143380. doi: 10.1172/JCI143380

PubMed Abstract | CrossRef Full Text | Google Scholar

65. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. (2020) 583:290–5. doi: 10.1038/s41586-020-2349-y

PubMed Abstract | CrossRef Full Text | Google Scholar

66. Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D, Sakharkar M, et al. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science. (2020) 369:731–6. doi: 10.1126/science.abc7424

PubMed Abstract | CrossRef Full Text | Google Scholar

67. Lipsitch M, Grad YH, Sette A, Crotty S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol. (2020) 20:709–13. doi: 10.1038/s41577-020-00460-4

PubMed Abstract | CrossRef Full Text | Google Scholar

68. Kreye J, Reincke SM, Pruss H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat Rev Immunol. (2020) 20:645–6. doi: 10.1038/s41577-020-00458-y

PubMed Abstract | CrossRef Full Text | Google Scholar

69. Caress JB, Castoro RJ, Simmons Z, Scelsa SN, Lewis RA, Ahlawat A, et al. COVID-19-associated Guillain-Barre syndrome: the early pandemic experience. Muscle Nerve. (2020) 62:485–91. doi: 10.1002/mus.27024

PubMed Abstract | CrossRef Full Text | Google Scholar

70. Kabeerdoss J, Pilania RK, Karkhele R, Kumar TS, Danda D, Singh S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: immunological mechanisms, clinical manifestations and management. Rheumatol Int. (2021) 41:19–32. doi: 10.1007/s00296-020-04749-4

PubMed Abstract | CrossRef Full Text | Google Scholar

71. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. (2020) 395:497–506. doi: 10.1016/S0140-6736(20)30183-5

PubMed Abstract | CrossRef Full Text | Google Scholar

72. O’Driscoll M, Ribeiro Dos Santos G, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. (2021) 590:140–5. doi: 10.1038/s41586-020-2918-0

PubMed Abstract | CrossRef Full Text | Google Scholar

73. Pastor-Barriuso R, Perez-Gomez B, Hernan MA, Perez-Olmeda M, Yotti R, Oteo-Iglesias J, et al. Infection fatality risk for SARS-CoV-2 in community dwelling population of Spain: nationwide seroepidemiological study. BMJ. (2020) 371:m4509. doi: 10.1136/bmj.m4509

PubMed Abstract | CrossRef Full Text | Google Scholar

74. Carlotti A, Carvalho WB, Johnston C, Rodriguez IS, Delgado AF. COVID-19 diagnostic and management protocol for pediatric patients. Clinics. (2020) 75:e1894. doi: 10.6061/clinics/2020/e1894

CrossRef Full Text | Google Scholar

75. Shenoy AT, Brissac T, Gilley RP, Kumar N, Wang Y, Gonzalez-Juarbe N, et al. Streptococcus pneumoniae in the heart subvert the host response through biofilm-mediated resident macrophage killing. PLoS Pathog. (2017) 13:e1006582. doi: 10.1371/journal.ppat.1006582

CrossRef Full Text | Google Scholar

76. Debnath M, Banerjee M, Berk M. Genetic gateways to COVID-19 infection: implications for risk, severity, and outcomes. FASEB J. (2020) 34:8787–95. doi: 10.1096/fj.202001115R

PubMed Abstract | CrossRef Full Text | Google Scholar

77. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. (2020) 27:1451–4. doi: 10.1038/s41418-020-0530-3

PubMed Abstract | CrossRef Full Text | Google Scholar

78. Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel SK, Murray J, et al. Isolation and characterization of SARS-CoV-2 from the first US COVID-19 patient. bioRxiv. (2020) doi: 10.1101/2020.03.02.972935

PubMed Abstract | CrossRef Full Text | Google Scholar

79. Takayama K. In vitro and animal models for SARS-CoV-2 research. Trends Pharmacol Sci. (2020) 41:513–7. doi: 10.1016/j.tips.2020.05.005

PubMed Abstract | CrossRef Full Text | Google Scholar

80. Kumar S, Sarma P, Kaur H, Prajapat M, Bhattacharyya A, Avti P, et al. Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: a systematic review. Tissue Cell. (2021) 70:101497. doi: 10.1016/j.tice.2021.101497

PubMed Abstract | CrossRef Full Text | Google Scholar

81. Alflen A, Aranda Lopez P, Hartmann AK, Maxeiner J, Bosmann M, Sharma A, et al. Neutrophil extracellular traps impair fungal clearance in a mouse model of invasive pulmonary aspergillosis. Immunobiology. (2020) 225:151867. doi: 10.1016/j.imbio.2019.11.002

PubMed Abstract | CrossRef Full Text | Google Scholar

82. Lakdawala SS, Menachery VD. The search for a COVID-19 animal model. Science. (2020) 368:942–3. doi: 10.1126/science.abc6141

CrossRef Full Text | Google Scholar

83. Johansen MD, Irving A, Montagutelli X, Tate MD, Rudloff I, Nold MF, et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. (2020) 13:877–91. doi: 10.1038/s41385-020-00340-z

PubMed Abstract | CrossRef Full Text | Google Scholar

84. Kumar S, Yadav PK, Srinivasan R, Perumal N. Selection of animal models for COVID-19 research. Virusdisease. (2020) 31:1–6. doi: 10.1007/s13337-020-00637-4

PubMed Abstract | CrossRef Full Text | Google Scholar

85. Munoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, et al. Animal models for COVID-19. Nature. (2020) 586:509–15.

Google Scholar

86. Lin DC, Xu L, Ding LW, Sharma A, Liu LZ, Yang H, et al. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc Natl Acad Sci USA. (2013) 110:6109–14. doi: 10.1158/1538-7445.AM2013-586

PubMed Abstract | CrossRef Full Text | Google Scholar

87. Huang WE, Lim B, Hsu CC, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. (2020) 13:950–61. doi: 10.1111/1751-7915.13586

PubMed Abstract | CrossRef Full Text | Google Scholar

88. Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LP, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. (2020) 12:eabc7075. doi: 10.1126/scitranslmed.abc7075

PubMed Abstract | CrossRef Full Text | Google Scholar

89. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. (2020) 38:870–4. doi: 10.1038/s41587-020-0513-4

CrossRef Full Text | Google Scholar

90. Kruttgen A, Cornelissen CG, Dreher M, Hornef M, Imohl M, Kleines M. Comparison of four new commercial serologic assays for determination of SARS-CoV-2 IgG. J Clin Virol. (2020) 128:104394. doi: 10.1016/j.jcv.2020.104394

PubMed Abstract | CrossRef Full Text | Google Scholar

91. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. (2020) 25:2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045

PubMed Abstract | CrossRef Full Text | Google Scholar

92. Eurosurveillance Editorial Team. Erratum for Euro Surveill. (2020). 25(3). Euro Surveill. (2021) 26:210204e. doi: 10.2807/1560-7917.ES.2021.26.5.210204e

CrossRef Full Text | Google Scholar

93. Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci. (2020) 6:591–605. doi: 10.1021/acscentsci.0c00501

PubMed Abstract | CrossRef Full Text | Google Scholar

94. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. (2020) 14:3822–35. doi: 10.1021/acsnano.0c02624

PubMed Abstract | CrossRef Full Text | Google Scholar

95. Zhang W, Du RH, Li B, Zheng XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. (2020) 9:386–9. doi: 10.1080/22221751.2020.1729071

PubMed Abstract | CrossRef Full Text | Google Scholar

96. Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. (2020) 4:1140–9. doi: 10.1038/s41551-020-00603-x

PubMed Abstract | CrossRef Full Text | Google Scholar

97. Dabbous HM, El-Sayed MH, El Assal G, Elghazaly H, Ebeid FFS, Sherief AF, et al. Safety and efficacy of favipiravir versus hydroxychloroquine in management of COVID-19: a randomised controlled trial. Sci Rep. (2021) 11:7282. doi: 10.1038/s41598-021-85227-0

PubMed Abstract | CrossRef Full Text | Google Scholar

98. Group RC, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med. (2020) 383:2030–40. doi: 10.1056/NEJMoa2022926

PubMed Abstract | CrossRef Full Text | Google Scholar

99. Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. (2015) 70:1608–21. doi: 10.1093/jac/dkv018

PubMed Abstract | CrossRef Full Text | Google Scholar

100. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. (2020) 56:105949. doi: 10.1016/j.ijantimicag.2020.105949

CrossRef Full Text | Google Scholar

101. Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the treatment of Covid-19 – preliminary report. Reply. N Engl J Med. (2020) 383:994. doi: 10.1056/NEJMc2022236

PubMed Abstract | CrossRef Full Text | Google Scholar

102. Rubin D, Chan-Tack K, Farley J, Sherwat A. FDA approval of remdesivir – a step in the right direction. N Engl J Med. (2020) 383:2598–600. doi: 10.1056/NEJMp2032369

PubMed Abstract | CrossRef Full Text | Google Scholar

103. Barnes PJ. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br J Pharmacol. (2006) 148:245–54. doi: 10.1038/sj.bjp.0706736

PubMed Abstract | CrossRef Full Text | Google Scholar

104. Group RC, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. (2021) 384:693–704. doi: 10.1056/NEJMoa2021436

CrossRef Full Text

105. Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. (2020) 2:e474–84. doi: 10.1016/S2665-9913(20)30285-X

PubMed Abstract | CrossRef Full Text | Google Scholar

106. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. (2020) 117:10970–5. doi: 10.1073/pnas.2005615117

PubMed Abstract | CrossRef Full Text | Google Scholar

107. Takla M, Jeevaratnam K. Chloroquine, hydroxychloroquine, and COVID-19: systematic review and narrative synthesis of efficacy and safety. Saudi Pharm J. (2020) 28:1760–76. doi: 10.1016/j.jsps.2020.11.003

PubMed Abstract | CrossRef Full Text | Google Scholar

108. Schogler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E, et al. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J. (2015) 45:428–39. doi: 10.1183/09031936.00102014

PubMed Abstract | CrossRef Full Text | Google Scholar

109. Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect. (2020) 50:384. doi: 10.1016/j.medmal.2020.03.006

PubMed Abstract | CrossRef Full Text | Google Scholar

110. Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep. (2017) 7:43395. doi: 10.1038/srep43395

PubMed Abstract | CrossRef Full Text | Google Scholar

111. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. (2020) 324:1330–41. doi: 10.1001/jama.2020.17023

PubMed Abstract | CrossRef Full Text | Google Scholar

112. Mihara M, Ohsugi Y, Kishimoto T. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, for treatment of rheumatoid arthritis. Open Access Rheumatol. (2011) 3:19–29. doi: 10.2147/OARRR.S17118

PubMed Abstract | CrossRef Full Text | Google Scholar

113. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. (2020) 50:332–4. doi: 10.1016/j.medmal.2020.03.007

PubMed Abstract | CrossRef Full Text | Google Scholar

114. Roumier M, Paule R, Vallee A, Rohmer J, Ballester M, Brun AL, et al. Tocilizumab for severe worsening COVID-19 pneumonia: a propensity score analysis. J Clin Immunol. (2021) 41:303–14. doi: 10.1007/s10875-020-00911-6

PubMed Abstract | CrossRef Full Text | Google Scholar

115. Sarfraz A, Sarfraz Z, Sarfraz M, Aftab H, Pervaiz Z. Tocilizumab and COVID-19: a meta-analysis of 2120. Patients with severe disease and implications for clinical trial methodologies. Turk J Med Sci. (2020) doi: 10.3906/sag-2010-131. [Epub ahead of print].

PubMed Abstract | CrossRef Full Text | Google Scholar

116. Horby PW, Pessoa-Amorim G, Peto L, Brightling CE, Sarkar R, Thomas K, et al. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): preliminary results of a randomised, controlled, open-label, platform trial. medRxiv. (2021) doi: 10.1101/2021.02.11.21249258

CrossRef Full Text | Google Scholar

117. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science. (2020) 369:1010–4. doi: 10.1126/science.abd0827

PubMed Abstract | CrossRef Full Text | Google Scholar

118. Fischer JC, Zanker K, van Griensven M, Schneider M, Kindgen-Milles D, Knoefel WT, et al. The role of passive immunization in the age of SARS-CoV-2: an update. Eur J Med Res. (2020) 25:16. doi: 10.1186/s40001-020-00414-5

PubMed Abstract | CrossRef Full Text | Google Scholar

119. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. (2020) 323:1582–9. doi: 10.1001/jama.2020.4783

PubMed Abstract | CrossRef Full Text | Google Scholar

120. Young MK. The indications and safety of polyvalent immunoglobulin for post-exposure prophylaxis of hepatitis A, rubella and measles. Hum Vaccin Immunother. (2019) 15:2060–5. doi: 10.1080/21645515.2019.1621148

PubMed Abstract | CrossRef Full Text | Google Scholar

121. Corti D, Passini N, Lanzavecchia A, Zambon M. Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. J Infect Public Health. (2016) 9:231–5. doi: 10.1016/j.jiph.2016.04.003

PubMed Abstract | CrossRef Full Text | Google Scholar

122. Zheng Z, Monteil VM, Maurer-Stroh S, Yew CW, Leong C, Mohd-Ismail NK, et al. Monoclonal antibodies for the S2 subunit of spike of SARS-CoV-1 cross-react with the newly-emerged SARS-CoV-2. Euro Surveill. (2020) 25:2000291. doi: 10.2807/1560-7917.ES.2020.25.28.2000291

PubMed Abstract | CrossRef Full Text | Google Scholar

123. Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. (2020) 369:1014–8. doi: 10.1126/science.abd0831

PubMed Abstract | CrossRef Full Text | Google Scholar

124. Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. (2021) 384:229–37. doi: 10.1056/NEJMoa2029849

PubMed Abstract | CrossRef Full Text | Google Scholar

125. Dyer O. Covid-19: Eli Lilly pauses antibody trial for safety reasons. BMJ. (2020) 371:m3985. doi: 10.1136/bmj.m3985

PubMed Abstract | CrossRef Full Text | Google Scholar

126. Group A-TL-CS, Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, et al. A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med. (2021) 384:905–14. doi: 10.1056/NEJMoa2033130

PubMed Abstract | CrossRef Full Text | Google Scholar

127. Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. (2021) 325:632–44. doi: 10.1001/jama.2021.0202

PubMed Abstract | CrossRef Full Text | Google Scholar

128. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med. (2021) 384:238–51. doi: 10.1056/NEJMoa2035002

PubMed Abstract | CrossRef Full Text | Google Scholar

129. Osama El-Gendy A, Saeed H, Ali AMA, Zawbaa HM, Gomaa D, Harb HS, et al. Bacillus Calmette-Guerin vaccine, antimalarial, age and gender relation to COVID-19 spread and mortality. Vaccine. (2020) 38:5564–8. doi: 10.1016/j.vaccine.2020.06.083

PubMed Abstract | CrossRef Full Text | Google Scholar

130. Hotez PJ, Corry DB, Bottazzi ME. COVID-19 vaccine design: the Janus face of immune enhancement. Nat Rev Immunol. (2020) 20:347–8. doi: 10.1038/s41577-020-0323-4

PubMed Abstract | CrossRef Full Text | Google Scholar

131. Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat Rev Drug Discov. (2020) 19:667–8. doi: 10.1038/d41573-020-00151-8

PubMed Abstract | CrossRef Full Text | Google Scholar

132. Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: the current state of play. Paediatr Respir Rev. (2020) 35:43–9. doi: 10.1016/j.prrv.2020.06.010

PubMed Abstract | CrossRef Full Text | Google Scholar

133. Parker EPK, Shrotri M, Kampmann B. Keeping track of the SARS-CoV-2 vaccine pipeline. Nat Rev Immunol. (2020) 20:650. doi: 10.1038/s41577-020-00455-1

PubMed Abstract | CrossRef Full Text

134. Team CC-R, Food, Drug A. Allergic reactions including anaphylaxis after receipt of the first dose of moderna COVID-19 vaccine – United States, December 21, 2020-January 10, 2021. MMWR Morb Mortal Wkly Rep. (2021) 70:125–9. doi: 10.15585/mmwr.mm7004e1

PubMed Abstract | CrossRef Full Text

135. Tregoning JS, Brown ES, Cheeseman HM, Flight KE, Higham SL, Lemm NM, et al. Vaccines for COVID-19. Clin Exp Immunol. (2020) 202:162–92. doi: 10.1111/cei.13517

CrossRef Full Text | Google Scholar

136. Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev Vaccines. (2021) 20:23–44. doi: 10.1080/14760584.2021.1875824

PubMed Abstract | CrossRef Full Text | Google Scholar

137. Badiani AA, Patel JA, Ziolkowski K, Nielsen FBH. Pfizer: the miracle vaccine for COVID-19?. Public Health in Practice. (2020) 1:100061. doi: 10.1016/j.puhip.2020.100061

CrossRef Full Text | Google Scholar

138. Chagla Z. The BNT162b2 (BioNTech/Pfizer) vaccine had 95% efficacy against COVID-19 >/=7 days after the 2nd dose. Ann Intern Med. (2021) 174:JC15. doi: 10.7326/ACPJ202102160-015

PubMed Abstract | CrossRef Full Text | Google Scholar

139. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. (2021) 384:403–16. doi: 10.1056/NEJMoa2035389

PubMed Abstract | CrossRef Full Text | Google Scholar

140. Livingston EH, Malani PN, Creech CB. The Johnson & Johnson vaccine for COVID-19. JAMA. (2021) 325:1575. doi: 10.1001/jama.2021.2927

CrossRef Full Text | Google Scholar

141. Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. (2021) 384:1372–4. doi: 10.1056/NEJMc2101667

PubMed Abstract | CrossRef Full Text | Google Scholar

142. Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science. (2021) 371:741–5. doi: 10.1126/science.abe6522

PubMed Abstract | CrossRef Full Text | Google Scholar

143. Palestino G, Garcia-Silva I, Gonzalez-Ortega O, Rosales-Mendoza S. Can nanotechnology help in the fight against COVID-19? Expert Rev Anti Infect Ther. (2020) 18:849–64. doi: 10.1080/14787210.2020.1776115

PubMed Abstract | CrossRef Full Text | Google Scholar

144. Rivera-Gil P, Jimenez de Aberasturi D, Wulf V, Pelaz B, del Pino P, Zhao Y, et al. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc Chem Res. (2013) 46:743–9. doi: 10.1021/ar300039j

PubMed Abstract | CrossRef Full Text | Google Scholar

145. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol. (2014) 88:1391–417. doi: 10.1007/s00204-014-1245-3

PubMed Abstract | CrossRef Full Text | Google Scholar

146. Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomed. (2012) 7:3445–71. doi: 10.2147/IJN.S30320

PubMed Abstract | CrossRef Full Text | Google Scholar

147. Leister H, Luu M, Staudenraus D, Lopez Krol A, Mollenkopf HJ, Sharma A, et al. Pro- and anti-tumorigenic capacity of immunoproteasomes in shaping the tumor microenvironment. Cancer Immunol Res. (2021) doi: 10.1158/2326-6066.CIR-20-0492. [Epub ahead of print].

CrossRef Full Text | Google Scholar

148. Douziech-Eyrolles L, Marchais H, Herve K, Munnier E, Souce M, Linassier C, et al. Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles. Int J Nanomed. (2007) 2:541–50.

PubMed Abstract | Google Scholar

149. Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava JA, Pasquali M, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano. (2020) 14:6383–406. doi: 10.1021/acsnano.0c03697

PubMed Abstract | CrossRef Full Text | Google Scholar

150. Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. (2015) 16:1671–81. doi: 10.2174/1389450115666140804124808

CrossRef Full Text | Google Scholar

151. Wu Z, Li T. Nanoparticle-mediated cytoplasmic delivery of messenger RNA vaccines: challenges and future perspectives. Pharm Res. (2021) 38:473–8. doi: 10.1007/s11095-021-03015-x

PubMed Abstract | CrossRef Full Text | Google Scholar

152. Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. (2014) 2014:359316. doi: 10.1155/2014/359316

PubMed Abstract | CrossRef Full Text | Google Scholar

153. Wen AM, Steinmetz NF. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev. (2016) 45:4074–126. doi: 10.1039/C5CS00287G

PubMed Abstract | CrossRef Full Text | Google Scholar

154. Fujita Y, Taguchi H. Nanoparticle-based peptide vaccines. Micro Nanotechnol Vaccine Dev. (2017) 149–70. doi: 10.1016/B978-0-323-39981-4.00008-7

CrossRef Full Text | Google Scholar

155. Al-Halifa S, Gauthier L, Arpin D, Bourgault S, Archambault D. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. (2019) 10:22. doi: 10.3389/fimmu.2019.00022

CrossRef Full Text | Google Scholar

156. Butkovich N, Li E, Ramirez A, Burkhardt AM, Wang SW. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol. (2020) 13:e1681. doi: 10.1002/wnan.1681

PubMed Abstract | CrossRef Full Text | Google Scholar

157. Li M, Cripe TP, Estes PA, Lyon MK, Rose RC, Garcea RL. Expression of the human papillomavirus type 11 L1 capsid protein in Escherichia coli: characterization of protein domains involved in DNA binding and capsid assembly. J Virol. (1997) 71:2988–95. doi: 10.1128/JVI.71.4.2988-2995.1997

PubMed Abstract | CrossRef Full Text | Google Scholar

158. Morikawa Y, Goto T, Momose F. Human immunodeficiency virus type 1 Gag assembly through assembly intermediates. J Biol Chem. (2004) 279:31964–72. doi: 10.1074/jbc.M313432200

PubMed Abstract | CrossRef Full Text | Google Scholar

159. Kaiser CR, Flenniken ML, Gillitzer E, Harmsen AL, Harmsen AG, Jutila MA, et al. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivoInt J Nanomed. (2007) 2:715–33.

PubMed Abstract | Google Scholar

160. Bruckman MA, Randolph LN, VanMeter A, Hern S, Shoffstall AJ, Taurog RE, et al. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology. (2014) 449:163–73. doi: 10.1016/j.virol.2013.10.035

PubMed Abstract | CrossRef Full Text | Google Scholar

161. Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, et al. Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivoJ Control Release. (2007) 120:41–50. doi: 10.1016/j.jconrel.2007.04.003

PubMed Abstract | CrossRef Full Text | Google Scholar

162. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymusAsian Pac J Trop Biomed. (2012) 2:953–9. doi: 10.1016/S2221-1691(13)60006-4

PubMed Abstract | CrossRef Full Text | Google Scholar

163. Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosaSpectrochim Acta A Mol Biomol Spectrosc. (2007) 67:1003–6. doi: 10.1016/j.saa.2006.09.028

PubMed Abstract | CrossRef Full Text | Google Scholar

164. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, et al. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol. (2007) 128:648–53. doi: 10.1016/j.jbiotec.2006.11.014

PubMed Abstract | CrossRef Full Text | Google Scholar

165. Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW. Bacterial sorption of heavy metals. Appl Environ Microbiol. (1989) 55:3143–9. doi: 10.1128/AEM.55.12.3143-3149.1989

CrossRef Full Text | Google Scholar

166. Yang D. Application of nanotechnology in the COVID-19 pandemic. Int J Nanomed. (2021) 16:623–49. doi: 10.2147/IJN.S296383

CrossRef Full Text | Google Scholar

167. Vahedifard F, Chakravarthy K. Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. (2021) 4:75–99. doi: 10.1007/s42247-021-00168-8

PubMed Abstract | CrossRef Full Text | Google Scholar

168. Mukherjee S, Mazumder P, Joshi M, Joshi C, Dalvi SV, Kumar M. Biomedical application, drug delivery and metabolic pathway of antiviral nanotherapeutics for combating viral pandemic: a review. Environ Res. (2020) 191:110119. doi: 10.1016/j.envres.2020.110119

CrossRef Full Text | Google Scholar

169. Upadhyay SK, Dan S, Girdhar M, Rastogi K. Recent advancement in SARS-CoV-2 diagnosis, treatment, and vaccine formulation: a new paradigm of nanotechnology in strategic combating of COVID-19 pandemic. Curr Pharmacol Rep. (2021) 7:1–14. doi: 10.1007/s40495-021-00250-z

CrossRef Full Text | Google Scholar

170. Kumar R, Nayak M, Sahoo GC, Pandey K, Sarkar MC, Ansari Y, et al. Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J Infect Chemother. (2019) 25:325–9. doi: 10.1016/j.jiac.2018.12.006

PubMed Abstract | CrossRef Full Text | Google Scholar

171. Bar-On YM, Flamholz A, Phillips R, Milo R. SARS-CoV-2 (COVID-19) by the numbers. Elife. (2020) 9:e57309. doi: 10.7554/eLife.57309

CrossRef Full Text | Google Scholar

172. Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents. (2009) 33:587–90. doi: 10.1016/j.ijantimicag.2008.12.004

PubMed Abstract | CrossRef Full Text | Google Scholar

173. Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. (2019) 20:2468. doi: 10.3390/ijms20102468

PubMed Abstract | CrossRef Full Text | Google Scholar

174. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. (2010) 464:1067–70. doi: 10.1038/nature08956

PubMed Abstract | CrossRef Full Text | Google Scholar

175. Sharma A, Steven S, Bosmann M. The pituitary gland prevents shock-associated death by controlling multiple inflammatory mediators. Biochem Biophys Res Commun. (2019) 509:188–93. doi: 10.1016/j.bbrc.2018.12.101

PubMed Abstract | CrossRef Full Text | Google Scholar

176. Sharma A, Kumar P, Ambasta RK. Cancer fighting SiRNA-RRM2 loaded nanorobots. Pharm Nanotechnol. (2020) 8:79–90. doi: 10.2174/2211738508666200128120142

PubMed Abstract | CrossRef Full Text | Google Scholar

177. Adhikari A, Pal U, Bayan S, Mondal S, Ghosh R, Darbar S, et al. Nanoceutical fabric prevents COVID-19 spread through expelled respiratory droplets: a combined computational, spectroscopic and anti-microbial study. bioRxiv. (2021) doi: 10.1101/2021.02.20.432081

CrossRef Full Text | Google Scholar

178. Abo-Zeid Y, Ismail NSM, McLean GR, Hamdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. (2020) 153:105465. doi: 10.1016/j.ejps.2020.105465

PubMed Abstract | CrossRef Full Text | Google Scholar

179. Khairil Anuar INA, Banerjee A, Keeble AH, Carella A, Nikov GI, Howarth M. Spy&Go purification of SpyTag-proteins using pseudo-SpyCatcher to access an oligomerization toolbox. Nat Commun. (2019) 10:1734. doi: 10.1038/s41467-019-09678-w

CrossRef Full Text | Google Scholar

180. Cohen AA, Gnanapragasam PNP, Lee YE, Hoffman PR, Ou S, Kakutani LM, et al. Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice. Science. (2021) 371:735–41. doi: 10.1126/science.abf6840

PubMed Abstract | CrossRef Full Text | Google Scholar

181. Roewe J, Stavrides G, Strueve M, Sharma A, Marini F, Mann A, et al. Bacterial polyphosphates interfere with the innate host defense to infection. Nat Commun. (2020) 11:4035. doi: 10.1038/s41467-020-17639-x

PubMed Abstract | CrossRef Full Text | Google Scholar

182. Puri N, Niazi A, Srivastava AK, Rajesh. Synthesis and characterization of reduced graphene oxide supported gold nanoparticles-poly(pyrrole-co-pyrrolepropylic acid) nanocomposite-based electrochemical biosensor. Appl Biochem Biotechnol. (2014) 174:911–25. doi: 10.1007/s12010-014-0997-9

PubMed Abstract | CrossRef Full Text | Google Scholar

183. Seo G, Lee G, Kim MJ, Baek SH, Choi M, Ku KB, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. (2020) 14:5135–42. doi: 10.1021/acsnano.0c02823

PubMed Abstract | CrossRef Full Text | Google Scholar

184. Jang H, Ryoo SR, Kim YK, Yoon S, Kim H, Han SW, et al. Discovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide. Angew Chem Int Ed Engl. (2013) 52:2340–4. doi: 10.1002/anie.201209222

PubMed Abstract | CrossRef Full Text | Google Scholar

185. Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J. Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. (2020) 14:5268–77. doi: 10.1021/acsnano.0c02439

PubMed Abstract | CrossRef Full Text | Google Scholar

186. Idris A, Davis A, Supramaniam A, Acharya D, Kelly G, Tayyar Y, et al. A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19. bioRxiv. (2021). doi: 10.1101/2021.04.19.440531

PubMed Abstract | CrossRef Full Text | Google Scholar

187. Chauhan G, Madou MJ, Kalra S, Chopra V, Ghosh D, Martinez-Chapa SO. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. (2020) 14:7760–82. doi: 10.1021/acsnano.0c04006

PubMed Abstract | CrossRef Full Text | Google Scholar

188. Acharya R. Prospective vaccination of COVID-19 using shRNA-plasmid-LDH nanoconjugate. Med Hypotheses. (2020) 143:110084. doi: 10.1016/j.mehy.2020.110084

PubMed Abstract | CrossRef Full Text | Google Scholar

189. Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. (2020) 383:2320–32. doi: 10.1056/NEJMoa2026920

PubMed Abstract | CrossRef Full Text | Google Scholar

190. Liu L, Liu Z, Chen H, Liu H, Gao Q, Cong F, et al. Subunit nanovaccine with potent cellular and mucosal immunity for COVID-19. ACS Appl Bio Mater. (2020) 3:5633–8. doi: 10.1021/acsabm.0c00668

CrossRef Full Text | Google Scholar

191. Ye T, Zhong Z, Garcia-Sastre A, Schotsaert M, De Geest BG. Current status of COVID-19 (Pre)clinical vaccine development. Angew Chem Int Ed Engl. (2020) 59:18885–97. doi: 10.1002/anie.202008319

PubMed Abstract | CrossRef Full Text | Google Scholar

192. Wang W, Huang B, Zhu Y, Tan W, Zhu M. Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice. Cell Mol Immunol. (2021) 18:749–51. doi: 10.1038/s41423-021-00643-6

PubMed Abstract | CrossRef Full Text | Google Scholar

193. Abd Ellah NH, Gad SF, Muhammad K, G EB, Hetta HF. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. (2020) 15:2085–102. doi: 10.2217/nnm-2020-0247

PubMed Abstract | CrossRef Full Text | Google Scholar

194. Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnology. (2004) 2:12. doi: 10.1186/1477-3155-2-12

PubMed Abstract | CrossRef Full Text | Google Scholar

195. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. (2009) 27:1–35. doi: 10.1080/10590500802708267

PubMed Abstract | CrossRef Full Text | Google Scholar

196. Byrne JD, Baugh JA. The significance of nanoparticles in particle-induced pulmonary fibrosis. Mcgill J Med. (2008) 11:43–50. doi: 10.26443/mjm.v11i1.455

PubMed Abstract | CrossRef Full Text | Google Scholar

197. Gupta R, Xie H. Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. (2018) 37:209–30. doi: 10.1615/JEnvironPatholToxicolOncol.2018026009

PubMed Abstract | CrossRef Full Text | Google Scholar

198. Thakur M, Gupta H, Singh D, Mohanty IR, Maheswari U, Vanage G, et al. Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J Nanobiotechnology. (2014) 12:42. doi: 10.1186/s12951-014-0042-8

PubMed Abstract | CrossRef Full Text | Google Scholar

199. Noon JB, Sharma A, Platten J, Quinton LJ, Reinhardt C, Bosmann M. IL-27 enhances the lymphocyte mediated innate resistance to primary hookworm infection in the lungs. bioRxiv. (2020). doi: 10.1101/2020.08.12.248021

CrossRef Full Text | Google Scholar

200. Moghimi SM. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol Ther. (2021) 29:898–900. doi: 10.1016/j.ymthe.2021.01.030

PubMed Abstract | CrossRef Full Text | Google Scholar

2 comments

Leave a Reply